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1. Introduction 

The US Army Research Laboratory (ARL) has been working with Raytheon to 
design efficient, broadband, linear, high-power amplifiers and robust, broadband, 
low-noise amplifiers for future adaptive, multimodal radar systems. Raytheon has 
a high-performance, W-band, gallium nitride (GaN) fabrication process and a 
process design kit (PDK) that researchers at ARL used to design low-noise 
amplifiers, power amplifiers, and other circuits for future radar, communications, 
and sensor systems. After the first set of ARL and Raytheon designs were submitted 
to fabrication, I performed a couple test designs of broadband Class A/B power 
amplifiers. While these designs did not get fabricated in the initial effort, they serve 
to demonstrate the performance, bandwidth, and capability of this GaN process and 
could potentially be fabricated in the future.  

2. Broadband Power Amplifier 

This report documents the preliminary design of a single high-electron mobility 
transistor (HEMT) and 2-way parallel combined HEMT power amplifier. These 
initial broadband power amplifiers are based on a 12×100-µm HEMT at a nominal 
recommended DC bias. This size HEMT had an optimal match provided by 
Raytheon as “RLoad” ohms in parallel with a negative “CDS” pF in capacitance. 
Since a negative reactance can only be matched over a limited band, an initial 
design was performed of an ideal, double, tuned, Q bandpass match for broadband 
operation centered around 4.5 GHz, with a goal of achieving 2 to 10 GHz. A 
schematic of the ideal load as a resistor in parallel with a capacitor and the ideal, 
double, tuned output matching circuit is shown in Fig. 1. The simulation from 2 to 
10 GHz of the ideal load (blue S11 trace) and ideal bandpass match (magenta S11 
trace) are shown in the Smith chart plot (Fig. 2). 

 

Fig. 1 Microwave Office (MWO) schematic for the ideal power load and match  
(12×100-μm HEMT—nominal DC bias) 
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Fig. 2 MWO simulation of the ideal power load and match (12×100-μm HEMT—2 to  
10 GHz) 

After designing an ideal, lumped-element output match, the capacitors and 
inductors were replaced with monolithic microwave integrated circuit (MMIC) 
elements from the Raytheon GaN design library and retuned to achieve a broadband 
match. Then microstrip bends, tees, and decoupling elements for the DC bias were 
added to complete a layout of the MMIC output match (Fig. 3). A simulation of the 
output match (Fig. 4) shows a better than 20-dB return loss from 2.3 GHz to above 
8.7 GHz (purple trace) versus the ideal, lumped-element, double, tuned match with 
slightly less bandwidth (magenta trace) but an excellent match midband. 
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Fig. 3 Schematic and MMIC layout of the broadband matching circuit (12×100-µm 
HEMT) 

 

Fig. 4 MWO simulation of the ideal (magenta) and MMIC output match (purple) 
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to 6 GHz, while the MMIC output match undershoots the real part of the impedance 
but stays very close to 95% of RLoad over a broader range of 3 to 7 GHz. Since an 
ideal reactance equivalent to a negative “CDS” capacitance can only be maintained 
over a finite bandwidth, the output matching circuits can be seen as matching well 
over the band, diverging at the low end of the frequency range (2 to 3 GHz). 
Resistances (left axis) in the plot are represented by shades of red and magenta, 
while capacitances (right axis) are represented by shades of blue. 

 

Fig. 5 Broadband impedance of output match ideal (solid) vs. MMIC (dotted)  
(RLoad || -CDS) 

After designing the output match for the broadband power amplifier, the S-
parameters of the 12×100-μm (1.2-mm) HEMT are generated at the nominal DC 
bias. Initially, these S-parameters were exported from Advanced Design System 
(ADS) (Fig. 6) and imported into MWO to perform an initial amplifier design. 
Small-signal stability was analyzed and establish with a shunt resistor and a parallel 
series resistor and capacitor on the gate of the HEMT. Figure 7 shows that the 
source stability circles are all outside the Smith chart, indicating unconditional 
stability. After stabilizing the 1.2-mm HEMT, the input impedance at midband  
(4.5 GHz) was simulated resulting in a higher Q matching impedance (Q = 2.4) 
than the output, making it more difficult to broadband match the power amplifier 
input. An initial ideal input match provided better than 10-dB return loss from 3.5 
to 6 GHz, but was limiting the amplifier bandwidth compared to the output 
matching circuit. An ideal, coupled line provided a broader frequency range for the 
input match, while sacrificing additional loss. A compact, spiral, coupled line was 
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a technique suggested by the Raytheon team to provide broadband match, but at 
these frequencies requires significant area in the MMIC layout. A preliminary ideal 
transmission line input matching circuit provided good performance from 2 to  
7 GHz (Fig. 8). The ideal input matching elements were replaced with MMIC 
components resulting in 2 relatively large inductors. Next, the folded, spiral, 
coupled line requires electromagnetic (EM) simulation to verify its performance.  

 

Fig. 6 ADS S-parameter simulation of the 12×100-µm (1.2-mm) GaN HEMT 

 

Fig. 7 Stabilizing resistors added to the 12×100-μm GaN HEMT plus broadband output match 
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Fig. 8 Ideal, coupled line input match for the 2- to 7-GHz, 1.2-mm GaN HEMT power 
amplifier 

A preliminary input match including DC bias input for the gate is shown in Fig. 9. 
A pseudo layout of the full one-stage, 1.2-mm, 2- to 8-GHz power amplifier is 
shown in Fig. 10; note the large area required for the broadband input match. The 
resulting single-stage amplifier performance is shown in Fig. 11, with good gain at 
2 GHz, dropping gradually to 10 dB at 8.5 GHz.  

  

Fig. 9 Broadband, compact, folded, coupled line MMIC input match for the 2- to 8-GHz, 
1.2-mm GaN HEMT power amplifier 
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Fig. 10 Unfinished layout of the broadband (2- to 8-GHz), 1.2-mm GaN HEMT power 
amplifier 

 

Fig. 11 Small-signal simulation of the broadband (2- to 8-GHz), 1.2-mm GaN HEMT power 
amplifier 
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With a preliminary layout and MWO simulations for a stable, broadband power 
amplifier from 2 to 8 GHz based on a 1.2-mm GaN HEMT, the next step was to 
perform nonlinear simulations using the design kit and ADS. The nonlinear HEMT 
model within the ADS Raytheon design kit is needed to do performance 
simulations. MWO schematics for the MMIC input and output circuits were 
translated into ADS schematics. Ideal bias tees were added to provide the DC bias 
as a convenience to simulating the ADS schematics (Fig. 12), though the matching 
circuits have the appropriate components for DC and RF decoupling. This power 
amplifier design would still need design rule checks (DRCs), layout versus 
schematic (LVS), and final EM simulations. If another fabrication opportunity 
appears, this is a good starting point and could be easily completed using the circuits 
documented in this technical report.  

 

Fig. 12 ADS simplified schematic of the 4- to 5-W, broadband (2- to 8-GHz), 1.2-mm GaN 
HEMT power amplifier 

A dynamic load line simulation at the center frequency of 4.5 GHz for the one-stage 
power amplifier at nominal DC bias is shown in Fig. 13. Performance simulations 
for power-added efficiency (PAE) and output power at the center frequency of  
4.5 GHz are shown in Fig. 14, with output power within 0.6 dB of ideal for a  
1.2-mm HEMT. As an additional verification, ADS was used to repeat the small-
signal S-parameter simulations, but with the nonlinear HEMT model at the nominal 
DC bias. The gain seems a little higher than the previous simulations in MWO, but 
the return loss and gain with frequency has a similar shape, as expected. To get a 
measure of the losses due to the physical MMIC output, input, and matching 
circuits, an ADS schematic of the power amplifier using the original lossless 
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element input and output matching circuits was simulated. Output power and 
efficiency is slightly higher in comparison for the broadband, 1.2-mm HEMT 
power amplifier with lossless matching elements. Figure 15 shows the performance 
simulation at the center frequency of 4.5 GHz, for the lossless, matched, 1.2-mm 
HEMT single-stage power amplifier. Performance simulations for PAE and output 
power with an ideal lossless matching circuit at the center frequency of 4.5 GHz 
are shown in Fig. 16, with output power equal to that expected for a 1.2-mm HEMT 
and PAE of 56%–57%. A summary table (see Table 1, shown later in this section) 
compares the relative performance for the ideal lossless and lossy MMIC one-stage, 
1.2-mm HEMT power amplifier at various frequencies, as well as a lossless 2-way 
parallel, combined, 2.4-mm HEMT power amplifier. 

  

Fig. 13 ADS dynamic load line simulation of the broadband (4.5-GHz), 1.2-mm HEMT 
power amplifier 
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Fig. 14 ADS performance simulation of the broadband (4.5-GHz), 1.2-mm HEMT power 
amplifier 

 

Fig. 15 ADS small-signal simulation of the broadband (2- to 8-GHz), 1.2-mm GaN HEMT 
power amplifier 
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Fig. 16 ADS performance simulation of the ideal broadband (4.5-GHz), 1.2-mm HEMT 
power amplifier 

In addition to the 1.2-mm broadband power amplifier, a 2.4-mm power amplifier 
was implemented using 2 parallel combined 1.2-mm HEMTs. First, the ideal output 
match for a single 1.2-mm HEMT was transformed from a 50-Ω output match to 
100 Ω so that 2 devices could be easily paralleled into a 50-Ω load. Figure 17 shows 
the ideal broadband output match from a single 1.2-mm HEMT transformed to a 
100-Ω output match, as well as the composite schematic of the 2-way combined 
output match (Fig. 18). This simple lossless combiner circuit would need to be 
modified to supply DC bias, and there are a several easy ways to modify it. The 2-
way combiner output matching circuit has the same broadband return loss, with a 
better than 20-dB return loss match to the ideal load from 2.7 to 7.6 GHz (Fig. 19).  

 

Fig. 17 MWO partial schematic for the ideal, parallel, 2-way combined circuit (12×100-µm 
HEMT) 
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Fig. 18 ADS schematic for the ideal, parallel, 2-way combined circuit (2- to 1.2-mm HEMTs) 

 

Fig. 19 Double, tuned, ideal load match for the parallel, 2-way combined circuit vs. the single 
HEMT 
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ADS was used to simulate the performance of the broadband power amplifier as a 
2-way combined (2.4 mm) HEMT power amplifier using the ideal output matching 
circuit from Fig. 18. The input of the 2-way combined amplifier was simulated as 
2 of the coupled line, ideal, input matching circuits into a 25-Ω source. An input 
matching circuit into a 50-Ω source would require a redesign but should not change 
the gain or bandwidth of the 2.4-mm power amplifier. Output power would be 
expected to double (+3 dB), with similar efficiency and bandwidth in comparison 
to the single 1.2-mm HEMT power amplifier. Figure 20 shows the performance 
simulation at the center frequency of 4.5 GHz, with output power equal to that 
expected and PAE of 55% for a lossless matched broadband, 2.4-mm HEMT 
single-stage power amplifier. A summary showing relative performance for the 
ideal lossless and lossy MMIC one-stage, 1.2-mm HEMT power amplifier at 
various frequencies, as well as an ideal, lossless, 2 parallel combined (2.4-mm) 
HEMT power amplifier are shown in Table 1.  

 

Fig. 20 ADS performance simulation of the ideal broadband (4.5-GHz), 2.4-mm HEMT 
power amplifier 
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Table 1 ADS relative performance simulations of the 1.2- and 2.4-mm broadband HEMT 
power amplifiers 

Frequency 2.5 GHz 3.0 GHz 4.5 GHz 6.5 GHz 7.0 GHz 

MMIC Pout 
PAE 

‒1.1 dB, 78% ‒0.7 dB, 85% ‒0.7 dB, 85% ‒0.9 dB, 81% ‒1.1 dB, 78% 

48.8% 49.4% 49.6% 42.5% 41.0% 

Ideal 1× Pout 
PAE 

‒0.9 dB, 81% ‒0.6 dB, 87% 0 dB, 100% ‒0.3 dB, 93% ‒0.4 dB, 91% 

57.0% 54.8% 56.5% 59.1% 59.3% 

Ideal 2× Pout 
PAE 

‒0.8 dB, 83% ‒0.4 dB, 91% 0 dB, 100% ‒0.3 dB, 93% ‒0.4 dB, 91% 

55.5% 53.2% 54.8% 57.6% 57.7% 

 

Losses for the MMIC output match were calculated to be a reasonable 0.3 dB over 
most of the band, with up to a 0.5-dB loss at the low end of the band, 2.5 to 3 GHz. 
Additional losses on the MMIC input match would similarly affect small signal 
gain and PAE. The performance data were typically 3 to 4 dB compressed for the 
Class A/B, biased power amplifier. For the ideal, 2.4-mm power amplifier, the input 
power level is 3 dB higher, corresponding to a 3-dB higher output power, with the 
same large signal gain as the ideal, 1.2-mm power amplifier. Nominal performance 
for the MMIC 1.2-mm HEMT amplifier was within 85% (0.6 dB) of expected 
output power with 50% PAE at 4.5 GHz. In comparison, the ideal version of the 
1.2-mm power amplifier was 100% (0 dB) of expected output power with 57% 
PAE. As expected the 2-way combined, ideal amplifier has double the output power 
with similar bandwidth and efficiency, showing double the power of a single  
1.2-mm HEMT with 55% PAE at a comparable gain compression level.  

3. Summary and Conclusion 

A preliminary design of a broadband, 1.2-mm HEMT power amplifier and a  
2.4-mm HEMT power amplifier using Raytheon’s GaN process was performed. 
The intent was to explore the bandwidth and performance of a Class A/B, biased, 
1.2-mm HEMT power amplifier designed to maximize bandwidth, output power, 
and PAE over the 2- to 8-GHz band. Trying to increase the band to 2 to 10 GHz 
would certainly require more matching losses to extend the bandwidth. A similar 
2-way combined, 2.4-mm HEMT power amplifier should achieve comparable 
performance based on a preliminary design using ideal, lossless matching elements. 
For the one-stage, 1.2-mm HEMT design, a preliminary layout was implemented, 
including EM simulations of critical elements such as the folded coupled line for 
the broadband input match.  
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These designs illustrate broadband, Class A/B power amplifiers using a 1.2-mm 
HEMT cell, which should provide good efficiency with matching network losses 
within 0.6 dB of ideal at these frequencies at the recommended DC bias. To get 
these designs ready for fabrication would require additional steps to pass DRC and 
LVS checks, perform full EM simulations, simulate process variation effects, and 
perform normalized determinant function stability analyses. 

The Raytheon process is very capable for high-power RF amplifiers and robust low-
noise amplifiers for receivers.  
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List of Symbols, Abbreviations, and Acronyms 

ADS Advanced Design System (CAD tool) 

ARL US Army Research Laboratory 

CAD computer-aided design 

DC direct current 

DRC design rule checks 

EM electromagnetic 

GaN gallium nitride 

HEMT high-electron mobility transistor 

LVS layout versus schematic 

MMIC monolithic microwave integrated circuit 

MWO Microwave Office (CAD tool) 

PAE power-added efficiency  

PDK process design kit  

RF radio frequency 
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